Specialized in PE, PVC, TPE, TPU and Low Smoke Zero Halogen (LSZH) wire and cable compound and materials.
In high-rise buildings, subway tunnels, new energy power stations and industrial complex scenarios, the fire safety of wires and cables is directly related to life and property and system reliability.
YINSU Flame Retardant Company provides customized flame retardant solutions for global customers, covering PE (polyethylene), PVC (polyvinyl chloride), TPE (thermoplastic elastomer), TPU (thermoplastic polyurethane) and LSZH (low smoke and halogen free) wire and cable systems to meet all safety requirements, ranging from UL94 V-0 flame retardant certification to EN 45545 fire protection for rail transportation and IEC 60754 low smoke and halogen free toxicity. All-round safety requirements.
Material Common Use Typical FR Type YINSU Flame Retardant Item No.
PE HDPE, LDPE, LLDPE, Red phosphorus, halogen free FR, PRP-950X, PE-XT-20, YS-F22B, MCA-B
Cross-linked PE cables, Bromine antimony masterbatch MDH, ATH
Plastic insulated cables.
PVC PVC &Plastic insulated power cables, T3 / ATO alternatives T3, T30
Aluminum stranded wires,
Prefabricated branch cables.
TPE Insulated wires, flexible cables Organic phosphorus YS-F22B, YS-9003
Shielded insulated cables
TPU Special purpose cables Organic phosphorus YS-F22B, YS-9003
Power cables for frequency converters.
Others Welcome to consult more details.
Organic nano-montmorillonite enhances polymer properties including mechanical strength, thermal stability, flame retardancy, and barrier performance. Modified via cation exchange and dispersed through high-shear processing, it enables high-performance polymer nanocomposites for packaging, engineering, and insulation applications.
This article explores the flame-retardant mechanisms of polymer composites, focusing on the roles of nitrogen, sulfur, silicon, and fluorine in improving fire resistance. It highlights how these elements contribute to flame retardancy through the formation of protective barriers, inert gas production, and inhibition of combustion processes. Despite advancements, challenges such as balancing performance with safety, minimizing environmental impact, regulatory compliance, and cost-effectiveness persist in achieving optimal flame retardancy in building materials. The ongoing research aims to address these challenges, promising safer, more sustainable flame-retardant solutions for the future. Keywords: polymer composites, flame retardant, nitrogen, sulfur, silicon, fluorine, building safety, environmental impact.
As technology continues to advance and new materials are developed, we expect that these materials will continue to drive innovation and growth in a variety of industries in an even more environmentally friendly and efficient manner. Ultimately, through continuous research and improvement, we will be able to create engineering plastics products that are safer, more reliable and in line with our sustainability goals to meet the challenges of the future.
Polymer synergistic flame - retardant technology combines multiple flame retardants to achieve better flame - retardant effects and cost - effectiveness. Common synergistic systems include halogen - antimony, halogen - inorganic compounds, etc. YINSU Flame Retardant's products like T3 and K100 show excellent synergistic effects in relevant applications.
In the process of formulating modified plastics, various factors need to be taken into consideration to ensure high performance and quality of the final product. YINSU Flame Retardant Company, based on its expertise in the field of flame retardant, provides a series of specialized flame retardant solutions for different materials.
Unveil the future of fire safety with our exploration of eco-friendly flame retardant solutions, where sustainability meets superior performance and environmental integrity.